Означення піраміди. Елементи піраміди.
Пірамідою називають многогранник, у якого одна з граней (яку називають основою) - довільний многокутник, інші грані - трикутники зі спільною вершиною.
На малюнку 463 зображено піраміду, основою якої є многокутник АВСDЕ. Грані зі спільною вершиною, про які йде мова в означені піраміди, - трикутники АВQ, ВСQ, СDQ, DЕQ, АЕQ. Ці грані називають бічними гранями піраміди. їх спільну вершину - точку Q називають вершиною піраміди. Піраміду, зображену на малюнку 463 називають пірамідою QАВСDЕ. Ребра піраміди, які з’єднують вершину піраміди з вершинами основи піраміди, називають бічними ребрами піраміди. На малюнку 463 відрізки QА, QВ, QС, QD і QЕ - бічні ребра піраміди.
Піраміду називають n-кутною, якщо її основою є n-кутник.
Трикутну піраміду називають також тетраедр.
На малюнку 463 зображено п’ятикутну піраміду.
На малюнку 463 зображено п’ятикутну піраміду.
Перпендикуляр, проведений із вершини піраміди до площини основи, називають висотою піраміди.
На малюнку 463 відрізок Q)К є висотою піраміди, точка К - основою висоти.
При розв’язуванні задач важливою є наступна властивість:
Якщо у піраміді виконується одна з двох наступних умов: всі бічні ребра утворюють з площиною основи рівні кути або довжини всіх бічних ребер рівні, то основою висоти піраміди є центр кола описаного навколо основи піраміди.
Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами.
Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.
Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.
Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник.
Надалі розглядатимемо лише піраміди з опуклим багатокутником в основі. Такі піраміди називаються опуклими багатогранниками.
Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.
Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.
Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней.
Формули
- Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
,
де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро, — кут при вершині піраміди - Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
Властивості
Такі три твердження є еквівалентними:
- Бокові ребра піраміди рівні;
- Бокові ребра піраміди нахилені до площини її основи під рівними кутами;
- Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи.
Такі три твердження також є еквівалентними:
- Вершина піраміди рівновіддалена від усіх сторін її основи;
- Двогранні кути при основі піраміди рівні;
- Вершина піраміди проектується до центру кола, вписаного в її основу.
Зрізана піраміда утворена пірамідою та площиною, яка паралельна до основи піраміди та перетинає її, відтинаючи подібну піраміду.
Приклад 1. Кожне з бічних ребер тетраедра дорівнює 65/8 см. Основою піраміди є трикутник зі сторонами 5 см, 5 см і 6 см. Знайти висоту піраміди.
Розв’язання (мал. 464). 1) Нехай QАВС - тетраедр, що задано в умові, ВС = 6 см; QК - висота тетраедра.
2) Оскільки всі бічні ребра тетраедра рівні, то точка К - центр кола, описаного навколо#8710;АВС; АК = R - радіус кола, описаного навколо цього трикутника.
3) За відомою формулою де а, b, с - сторони трикутника; S - його площа.
4) Знайдемо площу трикутника за формулою Герона
Також при розв’язуванні задач важливою є властивість:
Якщо у піраміді виконується одна з двох наступних умов: всі бічні грані утворюють з площиною основи рівні кути або довжини висот всіх бічних граней рівні, то основою висоти піраміди є центр кола, вписаного в основу піраміди.
Приклад 2. Основою піраміди є ромб з діагоналями 40 см і 30 см. Висота піраміди дорівнює 5 см. Всі висоти бічних граней рівні між собою. Знайти довжину висоти бічної грані.
Розв’язання. 1) Оскільки всі висоти бічних граней рівні між собою, то основою висоти піраміди є центр кола, вписаного в основу. Оскільки основою є ромб, то точка К - основа висоти є точкою перетину діагоналей ромба. На малюнку 465 зображено піраміду QАВСD, що задано в умові.
2) АВСD - основа піраміди, АС = 30 см, ВD = 40 см, QК - висота піраміди, QК = 5 см.
3) QМ - висота бічної грані, QМ АD
4) КМ - проекція QМ на площину основи. За теоремою про три перпендикуляри: КМ АD.
5) АD - висота прямокутного трикутника АКD.
7) Знайдемо двічі площу ∆АКD:
Немає коментарів:
Дописати коментар