Правильний тетраедр

Тетра́едр називається правильним, якщо всі його грані — рівносторонні трикутники. У правильного тетраедра всі двогранні кути при ребрах і всі тригранні кути при вершинах рівні.
Правильний тетраедр має три вісі симетрії.
Правильний тетраедр має шість площин симетрій.
Декартові координати
Правильний тетраедр можна задати координатами його вершин
- (1, 1, 1)
- (-1, −1, 1)
- (-1, 1, −1)
- (1, −1, −1)
довжина ребра в цьому випадку складатиме 
.

.
Формули
У правильного тетраедра з довжиною ребра a:
Площа поверхні 

Висота 

Радіус вписаної сфери 

Радіус описаної сфери 

Кут нахилу ребра 

Кут нахилу грані 

Група симетрій — Тетраедральна (Th)


Властивості правильного тетраедра
- В правильний тетраедр можна вписати октаедр, притому чотири (з восьми) грані октаедра будуть суміщено з чотирма гранями тетраедра, всі шість вершин октаедра будуть суміщено з центрами шести ребер тетраедра.
- Правильний тетраедр з ребром х складається з одного вписаного октаедра (у центрі) з ребром х/2 і чотирьох тетраедрів (по вершинам) з ребром х/2.
- Правильний тетраедр можна вписати в куб двома способами, притому чотири вершини тетраедра будуть суміщено з чотирма вершинамі куба. Всі шість ребер тетраедра лежатимуть на всіх шести гранях куба і дорівнюватимуть діагоналі грані-квадрата.
- Правильний тетраедр можна вписати в ікосаедр, притому, чотири вершини тетраедра будуть суміщено з чотирма вершинамі ікосаедра.
Теорема про бічну поверхню правильної піраміди
Піраміда називається правильною, якщо її основою є правильний многокутник, а основа висоти збігається з центром многокутника. Віссю правильної піраміди називається пряма, яка містить її висоту. Бічні ребра правильної піраміди рівні, бічні грані — рівні рівнобедрені трикутники. Висота бічної грані, проведена з вершини піраміди, називається апофемою. Вона є бісектрисою та медіаною бічної грані, оскільки та є рівнобедреним трикутником.
Теорема. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.


де Р — периметр основи, а — сторона основи, l — довжина апофеми.
Правильна трикутна піраміда
В основі правильної трикутної піраміди лежить рівносторонній трикутник, який зображується довільним трикутником (див. рисунок).

Центром

На рисунку:


Нехай

Тоді






Отже,



Площина осьового перерізу ASD є площиною симетрії правильної трикутної піраміди.
Ця площина перпендикулярна до площини основи і площини грані BSC.
Цікаво також відмітити, що мимобіжні ребра піраміди (SA і BC, SB і AC, SC і AB) є перпендикулярними. Якщо


Правильна чотирикутна піраміда
В основі правильної чотирикутної піраміди лежить квадрат, який зображується довільним паралелограмом. Його центром є точка перетину діагоналей. Ця точка — основа висоти піраміди.
Нехай сторона квадрата а (див. рисунок).
Тоді






Зверніть увагу:



При паралельному проектуванні паралельність зберігається.


Відстань від основи висоти до бічної грані:


Правильна шестикутна піраміда
В основі правильної шестикутної піраміди лежить правильний шестикутник (див. рисунок). Його центром є точка перетину діагоналей. Ця точка — основа висоти піраміди.

Тоді

Нехай сторона правильного шестикутника а.







Немає коментарів:
Дописати коментар